Conservators of the River Cam Calculation of Carrying Capacity for a Standard Punt

A naïve analysis might suggest that these punts could safely carry about eight or nine persons; rationalizing this, it is clear that such an approach would imply a carrying capacity of $8\frac{1}{2}$ persons, which is an absurdity indicating the inherent unsuitability of the method. Instead, a more careful approach is required.

Let *n* be the carrying capacity of the punt, l_x , l_y and l_z its length, width and depth respectively, M_p the mass of each passenger, M_P the mass of a punt, ρ the density of pure water at 13°C, θ_{min} and θ_{max} the maximum and minimum water temperatures irrespectively (of, amongst other things, the fact that punts don't tend to cut through ice), α the temperature coefficient of ρ , μ a factor to correct ρ for muddiness, N the number of punts on the Cam, \mathcal{N} the number of swans, \mathcal{N} the mean number of cygnets per swan, \mathbf{N} the mean driftwood vector, \mathbf{n} the mean punt vector, \hat{n} the number of silly hats typically worn by punters, \mathbb{N} the number of punters seeing double due to excessive Pimms, $N_{\Gamma \neg}$ the number of people trying to traverse bridges, and $\tilde{\mathfrak{N}}_{ab^*}^{(2)}$ the correlation coefficient of pairs of punts with respect to the differential cross section for collisions. Then it can be shown that

$$n = \frac{\mu \rho (1 + \alpha (\theta_{max} - \theta_{min})) l_x l_y l_z - M_P}{M_p} \left(1 + \frac{N \mathcal{N} (1 + \mathcal{N})^7}{234567} + \frac{N}{e^{\pi}} \sqrt[3]{\Re\{e^{i\mathbf{N}\cdot\mathbf{n}}\}} + \frac{\ln(N\hat{n}\mathbb{N} + \mathcal{N}N_{\Gamma}^2)}{4} + |\tilde{\mathfrak{N}}_{ab^*}^{(2)}|\cos^2(\pi N)\right)^{-\frac{1}{3}}.$$

Using the facts that $l_x = 6m$, $l_y = 1m$, $l_z = 0.3m$, M_p can be as great as 100kg in the case of over-fed tourists, $M_P = 700$ kg, $\rho = 9.99377 \times 10^2$ kgm⁻³, $\theta_{min} = -5^{\circ}$ C, $\theta_{max} = 35^{\circ}$ C, $\alpha = -1.39921 \times 10^{-4} \, ^{\circ}$ C⁻¹, μ must surely be at least 1.2, N = 200 or so if it's sunny, $\mathcal{N} \approx 50$, $\mathcal{N} \approx 1$, $\mathbf{N} = (1,0)$ (i.e. downstream), $\mathbf{n} = \mathbf{0}$, \hat{n} and \mathbb{N} can easily reach 20 and 100 respectively during May week, $N_{\Gamma \neg} = 19$, and we will have to set $\tilde{\mathfrak{N}}_{ab^*}^{(2)}$ to 1 as we don't really understand what it means, it therefore follows that n = 6.0000, consistent with the known discreteness of persons and eminently suitable as a mandatory limit.